

Medical chemistry- year1

Acid And Base

Lecture no(8)

By Assis.Teacher. Rana Hassan
Basic Of Science
College Of Dentistry
University Of Basrah

Medical chemistry- year1

Objectives

- 1- properties of acid and base
- 2- acid, base are defined by three main theories.
- 3- Arrhenius theory
- 4- Bronsted and Lowry Theory
- **5- Lewis Theory**
- 6- Strong vs. Weak Acids and Bases
- 7- PH

History Of Acids And Bases

In the early days of chemistry chemists were organizing physical and chemical properties of substances. they different property categories:

ACID	BASE
1- sour taste	1- bitter taste
2- reacts with carbonates to make CO ₂	2- reacts with fats to make soaps
3-reacts with metals to produce H ₂	3-do not react with metals
4- turns blue litmus pink	4- turns red litmus blue
5- reacts with base to make salt water	5- reacts with acid to make salt water
6- having the PH <7	6- having the PH >7

Arrhenius was the first person to suggest a reason why substances are in A or B due their ionization in water

Arrhenius theory

- ✓ Proposed in 1884 by Svante Arrhenius
- ✓ <u>ACIDS</u>: An acid is a substance that contains hydrogen and produces H⁺ in aqueous Solution.

$$HCl (aq) \longrightarrow H^+ + Cl$$

- ✓ **BASES**: A base is a solution that contains ,the OH group and produces Hydroxide ions OH-, in aqueous solution.
- ✓ Ca(OH)2

$$Ca+2 + 2 OH^{-}$$

- ✓ Neutralization is defined as the combination of H^+ ions with OH^- ions to form H_2O molecules.
- \checkmark H⁺ (aq) + OH⁻(aq) \longrightarrow H₂O(l)

limitation of Arrhenius theory

- 1- water is essential
- 2- not explain acidity or Basicity of no aqueous solvent eg: benzene.
- 3- Basicity of ammonia (No OH ion) is not explain.
- 4- acidity of BF3,ALCl3(NO H⁻ ion) is not explain

bronsted and lowry theory

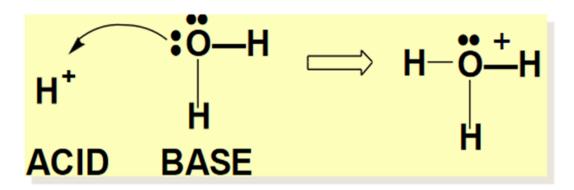
Proposed in 1923 by N. Bronsted and T.M.Lowry

<u>Acid</u> – any substance donating a proton, H⁺ <u>Base</u> – any substance accepting a proton.

- •Acids H⁺ donors
 - •Bases H⁺ acceptors
- An acid-base reaction is the transfer of a proton from an acid to a base.
- The complete ionization of hydrogen chloride, HCl in water is an acid-base reaction.
- Step 1: HCl(aq) \longrightarrow H⁺(aq) + Cl⁻(aq) (Arrehnius)
- Step 2: H^+ (aq) + $H_2O(1)$ \longrightarrow H_3O^+
- Overall: $HCl(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + Cl^-(aq)$ (LB)

Lewis theory

- ✓ Proposed by G. N. Lewis
- ✓ An acid is any species that can accept a share in an electron pair. A base is any species that can make available or donate a share in an electron pair.
- ✓ Lewis base an electron pair donor
- ✓ Lewis acid an electron pair acceptor
- ✓ Lewis acid + Lewis base ← → Adduct


Bases - Electron Pair Donors

species with O,N, halogen frequently have lone pairs of electrons to share ...
Lewis bases

Lewis theory

A Lewis acid and base can interact by sharing an electron pair.

Formation of hydronium ion is an excellent example.

Strong vs. Weak Acids and Bases

Acid and base strength is based on the extent of substance is dissolved . ionization that occurs when the in water

Strong Acids:

- strong electrolytes completely ionized in solution.
- •there are (6) strong acids know them: HCl, HBr, HI, HNO3, (diprotic).HClO4, H2SO4

Weak Acids

- •weak electrolytes partially ionized (typically < 5%) in aqueous solution.
- any acid that is not a strong acid is a weak acid some examples: HF, H2CO3, H3PO4, HNO2, HBrO4

Strong vs. Weak Acids and Bases

Strong Bases:

- •strong electrolytes completely ionized in solution.
- the strong bases are the hydroxides of the alkali metals & hydroxides of most alkaline earth metals; KNOW THEM:

LiOH, NaOH, KOH, RbOH, CsOH, Ca(OH)2, Sr(OH)2, Ba(OH).

Weak Bases:

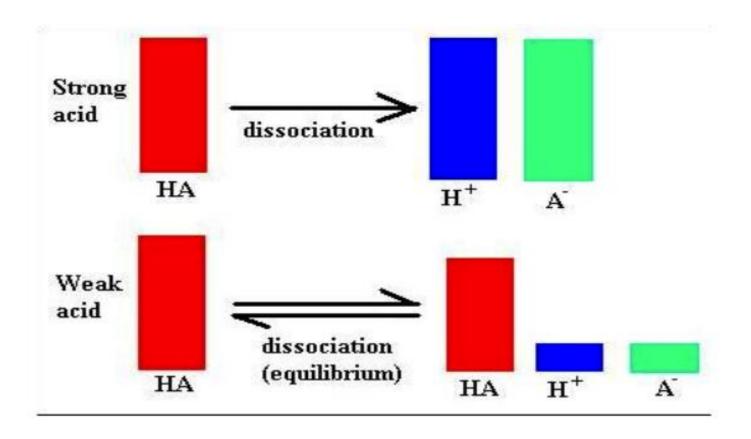
- •weak electrolytes partially ionized (typically < 5%) in aqueous solution.
- •weak bases: tend to be organic compounds that contain nitrogen; ammonia and substituted amines some examples: NH₃, (CH₃)NH₂, (CH₃)₃N , C₅H₅N, N₂H₄, NH₂OH.

Strong vs. Weak Acids and Bases

Reversible H+ Transfer Reactions

- we defined weak acids and weak bases as weak electrolytes (only partially ionized in aqueous solution).
- Now we can talk about their behaviour in terms of an equilibrium that exists in solution:

HA (aq) + H₂O (I)
$$\rightleftharpoons$$
 A⁻ (aq) + H₃O⁺ (aq)
B (aq) + H₂O (I) \rightleftharpoons BH⁺ (aq) + OH⁻ (aq)


- These are heterogeneous equilibria
- •We will discuss/define equilibrium constants, Ka & Kb.

Weak Acids and Acid Ionization Constant, Ka

HA (aq) + H₂O (I)
$$\rightleftharpoons$$
 A⁻ (aq) + H₃O⁺ (aq)
$$K_a = \frac{[H_3O^+][A^-]}{[HA]}$$

- K_a is the acid ionization constant
- the larger the value of K_a...
 the equilibrium position lies farther to the right higher [H₃O⁺]
 greater extent of ionization
 stronger acid

Weak Acids and Acid Ionization Constant, Ka

Weak Bases and Bases Ionization Constant, Kb

B (aq) + H₂O (l)
$$\rightleftharpoons$$
 BH⁺ (aq) + OH⁻ (aq)
$$K_b = \frac{[BH^+][OH^-]}{[B]}$$

- K_b is the base ionization constant
- the larger the value of K_b...
 the equilibrium position lies farther to the right higher [OH⁻]
 greater extent of ionization
 stronger base

Acid-Ionization Constant at 25° C

Table 16.1 Acid-Ionization Constants at 25°C*		
Substance	Formula	K_a
Acetic acid	$HC_2H_3O_2$	1.7×10^{-5}
Benzoic acid	$HC_7H_5O_2$	6.3×10^{-5}
Boric acid	H_3BO_3	5.9×10^{-10}
Carbonic acid	H_2CO_3	4.3×10^{-7}
	HCO ₃ ⁻	4.8×10^{-11}
Cyanic acid	HOCN	3.5×10^{-4}
Formic acid	HCHO ₂	1.7×10^{-4}
Hydrocyanic acid	HCN	4.9×10^{-10}
Hydrofluoric acid	HF	6.8×10^{-4}
Hydrogen sulfate ion	HSO ₄ ⁻	1.1×10^{-2}
Hydrogen sulfide	H_2S	8.9×10^{-8}
	HS^-	$1.2 \times 10^{-13\dagger}$

Bases-Ionization Constant at 25° C

Table 16.2 Base-Ionization Constants at 25°C		
Substance	Formula	K_b
Ammonia	NH_3	1.8×10^{-5}
Aniline	$C_6H_5NH_2$	4.2×10^{-10}
Dimethylamine	$(CH_3)_2NH$	5.1×10^{-4}
Ethylamine	$C_2H_5NH_2$	4.7×10^{-4}
Hydrazine	N_2H_4	1.7×10^{-6}
Hydroxylamine	NH ₂ OH	1.1×10^{-8}
Methylamine	CH_3NH_2	4.4×10^{-4}
Pyridine	C_5H_5N	1.4×10^{-9}
Urea	NH ₂ CONH ₂	1.5×10^{-14}

Acidic, Basic & Neutral Aqueous Solutions

 distinguish between acidic, basic and neutral solutions based on the relative [H3O+] & [OH-]

```
if [H_3O^+] > [OH^-], solution is acidic
if [OH^-] > [H_3O^+], solution is basic
if [H_3O^+] = [OH^-], solution is neutral
```

for a neutral solution at 25°C:

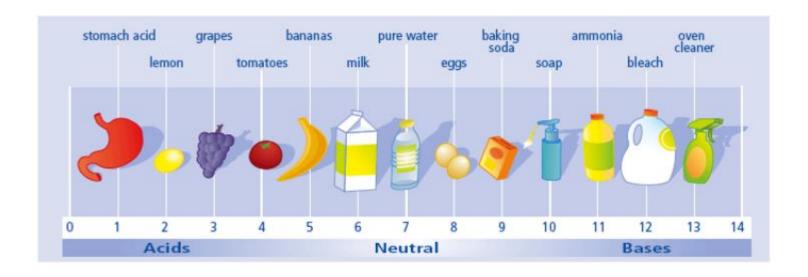
$$[H_3O^+] = [OH^-] = 1.0 \times 10^{-7} M$$

Auto-Ionization of water and KW

- •recall that water is amphoteric can act as an acid or a base.
- now consider a reaction between 2 water molecules:

$$H_2O\left(I\right)+H_2O\left(I\right)\rightleftarrows H_3O^+\left(aq\right)+OH^-\left(aq\right)$$

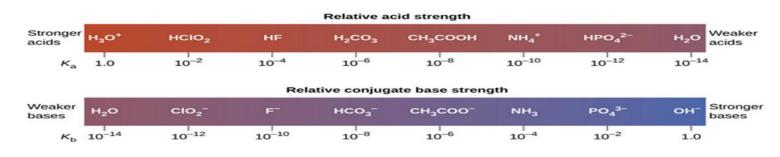
 this is called the auto-ionization of water heterogeneous equilibrium


$$K_W = [H_3O^+][OH^-]$$

at 25°C. $K_W = 1.0 \times 10^{-14}$

In any aqueous solution at 25° C: [H₃O⁺][OH⁻] = K_W = 1.0×10^{-14}

The PH Scale


logarithmic scale of [H₃O⁺] in solution

$$pH = -log[H_3O^+]; [H_3O^+] = 10^{-pH}$$

PH

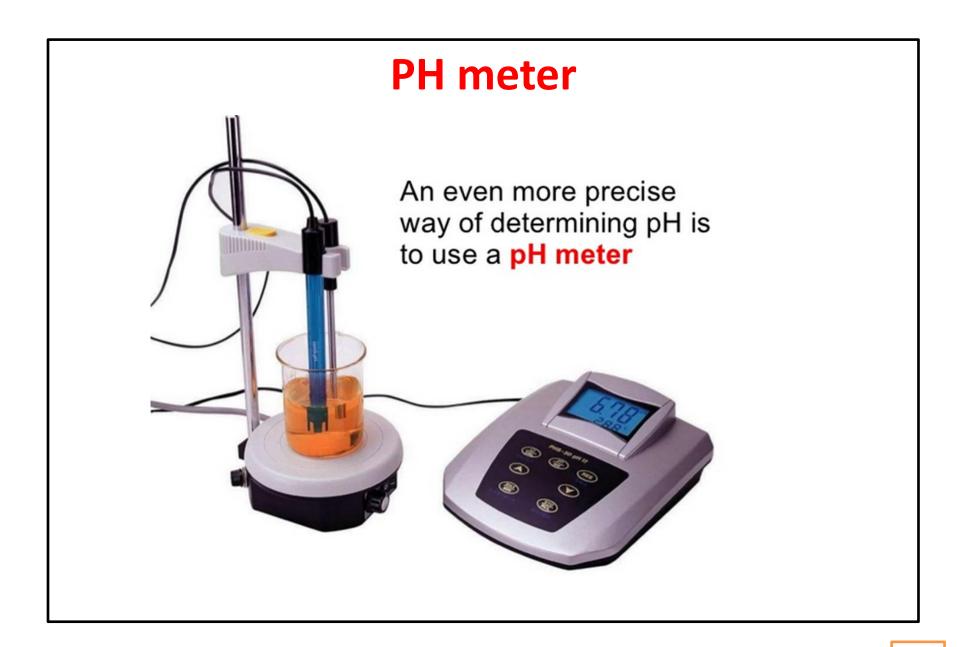
- pH is a unit of measure which describes the degree of acidity or alkalinity (basic) of a solution.
- It is measured on a scale of 0 to 14.
- The formal definition of pH is the negative logarithm of the hydrogen ion activity.
- pH = -log[H+]

pH value

- The pH value of a substance is directly related to the ratio of the hydrogen ion and hydroxyl ion concentrations.
- If the H+ concentration is higher than OHthe material is acidic.
- If the OH- concentration is higher than H+ the material is basic.
- 7 is neutral, < is acidic, >7 is basic

PH calculation

Relative acidity and basicity of solution


- in any aqueous solution at 25°C: $[H_3O^+][OH^-] = I \times 10^{-14}$
- $pH = -log[H_3O^+]; [H_3O^+] = 10^{-pH}$
- higher [H⁺]
 more acidic solution lower pH
- higher [OH⁻] Iower [H⁺]
 more basic solution I higher pH

POH calculation

pOH = - log [OH-] = 10-POH the higher the [OH-], the lower the pOH as [OH-] changes by factor of 10, the pOH changes by I unit

$$PH+POH=14$$

at 25 °C

Example 1: What is the pH of the strong base 0.1M NaOH Assume complete dissociation ?

sol: NaOH
$$\rightarrow$$
 Na+ + OH-
Kw = [H+ (aq)][OH- (aq)] = 1x10-14
[H+(aq)] = kw/ [OH- (aq)] = 1x10-14 / 0.1 = 1x10-13 M
pH = - log[1x10-13] = 13.00

Example 2:

What is the concentration of HCl with a pH of 1.35?

$$[H+] = 1 \times 10^{-1.35} = 0.045M$$

Example 3 What is the pH of a solution of 0.01M ethanoic acid (ka is 1.7 x 10⁻⁵ mol cm⁻³)?

$$\mathsf{Ka} = \frac{ [\mathsf{H^+}_{(\mathsf{aq})}] [\mathsf{CH}_3 \mathsf{CO}_2^-_{(\mathsf{aq})}] }{ [\mathsf{CH}_3 \mathsf{CO}_2^-_{(\mathsf{aq})}] } \longrightarrow \mathsf{Ka} = \frac{ [\mathsf{H^+}_{(\mathsf{aq})}]^2 }{ [\mathsf{CH}_3 \mathsf{CO}_2 \mathsf{H}_{(\mathsf{aq})}] } \longrightarrow \mathsf{Ka} = \frac{ [\mathsf{H^+}_{(\mathsf{aq})}]^2 }{ [\mathsf{CH}_3 \mathsf{CO}_2 \mathsf{H}_{(\mathsf{aq})}] } \longrightarrow \mathsf{I.7x} \; \mathsf{10}^{-5} = \frac{ [\mathsf{H^+}_{(\mathsf{aq})}]^2 }{ 0.01 }$$

$$[\mathsf{H^+}_{(\mathsf{aq})}]^2 = 1.7 \; \mathsf{x} \; \mathsf{10}^{-5} \; \mathsf{x} \; \mathsf{0.01}$$

$$\mathsf{pH} \; = -\log \; [\mathsf{H^+}] = -\log \; (4.12 \; \mathsf{x} \; \mathsf{10}^{-4})$$

$$\mathsf{pH} = 3.38$$

Ex:

Calculate pH for 0.060M NaOH:

NaOH is strong base and completely ionizes. Therefore, $[OH^{-1}] = 0.060M$

$$[H^{+1}][OH^{-1}] = 1.0x10^{-14}$$

 $[H^{+1}][0.060] = 1.0x10^{-14}$
 $[H^{+1}] = 1.7x10^{-13}$
 $pH = -log[H^{+1}] = -log[1.7x10-13] = 12.77$

Calculate pH for 0.00025M Ca(OH)2:

 $Ca(OH)_2$ strong base and completely ionizes. Therefore, $[OH^{-1}] = 0.00050M$

$$[H^{+1}][OH^{-1}] = 1.0x10^{-14}$$

 $[H^{+1}][0.00050] = 1.0x10^{-14}$
 $[H^{+1}] = 2.0x10^{-11}$
 $pH = -log[H^{+1}] = -log[2.0x10^{-11}] = 10.70$

Calculate
$$[OH^{-1}]$$
 when $pH = 11.75$
 $pOH = 14 - 11.75 = 2.25$
 $[OH^{-1}] = antilog (-pOH) = antilog (-2.25) = 0.00562M$

Thank you